A Simple Proof of Livingston's Inequality for Carathéodory Functions
نویسندگان
چکیده
The Livingston determinant inequality involving the Maclaurin coefficients of a Carathéodory function are derived in a straightforward manner by use of the Riesz-Herglotz representation and the Schwarz inequality. The result is extended to the case of matrix-valued functions.
منابع مشابه
Probability Generating Functions for Sattolo’s Algorithm
In 1986 S. Sattolo introduced a simple algorithm for uniform random generation of cyclic permutations on a fixed number of symbols. Recently, H. Prodinger analysed two important random variables associated with the algorithm, and found their mean and variance. H. Mahmoud extended Prodinger’s analysis by finding limit laws for the same two random variables.The present article, starting from the ...
متن کاملHardy’s Inequality from a Logarithmic Caccioppoli Estimate
We give a simple proof of Hardy's inequality based on the logarithmic Cacciopoli inequality for p-superharmonic functions .
متن کاملA companion of Ostrowski's inequality for functions of bounded variation and applications
A companion of Ostrowski's inequality for functions of bounded variation and applications are given.
متن کاملPolarization constant $mathcal{K}(n,X)=1$ for entire functions of exponential type
In this paper we will prove that if $L$ is a continuous symmetric n-linear form on a Hilbert space and $widehat{L}$ is the associated continuous n-homogeneous polynomial, then $||L||=||widehat{L}||$. For the proof we are using a classical generalized inequality due to S. Bernstein for entire functions of exponential type. Furthermore we study the case that if X is a Banach space then we have t...
متن کاملOn the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications
In this paper, a generalization of trapezoid inequality for functions of two independent variables with bounded variation and some applications are given.
متن کامل